Header
Accueil du site > Publications > Primordial heavy noble gases in the pristine Paris carbonaceous (...)

Primordial heavy noble gases in the pristine Paris carbonaceous chondrite

Bekaert, D. ; Marrocchi, Y. ; Meshik, A. ; Remusat, L. ; Marty, B., MAPS

Primordial heavy noble gases in the pristine Paris carbonaceous chondrite

Bekaert, D. ; Marrocchi, Y. ; Meshik, A. ; Remusat, L. ; Marty, B.

Meteoritics & Planetary Science, 2018, 1-20

Abstract :

Abstract–The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018). Here, we aim to evaluate the contribution of outer solar system (cometary-like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high-precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary-like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.

Voir en ligne : https://doi-org.insu.bib.cnrs.fr/10...




publié jeudi 6 décembre 2018